Experimental Results of the Induction Synchrotron and beyond That

Ken Takayama

High Energy Accelerator Research Organization (KEK)

on behalf of Super-bunch Group which consists of staffs of KEK, TIT, and Nagaoka Tech. Univ.

9th US -Japan Workshop on Heavy Ion Fusion and High Energy Density Physics at LBNL December 18-20, 2006

Contents

- Brief history of the *Induction Synchrotron* R&D at KEK
- ■Outline of the *Induction Synchrotron* (IS)
- Experimental results using the KEK 12GeV PS
- A modification plan of the KEK 500MeV Booster to an All-ion Accelerator (Injector-free IS) as a driver of medium energy heavy ions
- Summary

History of Induction Synchrotron Research at KEK

Year	Major topics & outputs	Events
1999	Proposal of the Induction Synchrotron concept by K.Takayama and J.Kishiro	vFACT'99
2000	R&D works on the 1MHz switching power supply started.	EPAC2000
2001	R&D works on the 2.5kV, 1MHz induction acceleration cell started. Proposal of a Super-bunch Hadron Collider	PAC2001 Snowmass2001
2002		ICFA-HB2002 EPAC2002, RPIA2002
2003	5 years term Project using the KEK-PS officially started with a budget of 5M\$.	PAC2003 ICFA-HB2003
2004	 The first engineering model of the switching P.S. was established. 3 induction acceleration cells (2 kVx3=6 kV) were installed. (May) First experimental demonstration of induction acceleration in the KEK-PS (Oct Nov.) Barrier trapping at the injection energy of 500MeV and a 500 nsec-long bunch was achieved. (Dec.) 	APAC2004 EPAC2004 ICFA-HB2004 CARE HHH2004
2005	Proposal of All-ion Accelerators Another 3 induction acceleration cells (2 kVx3=6kV) were installed (Sept). • Quasi-adiabatic non-focusing transition crossing was demonstrated in the hybrid synchrotron (RF capture + induction acceleration), (Dec.)	PAC2005
2006	Another 4 induction acceleration cells (2 kVx4=8 kV) were installed.(Jan.) • Full demonstration of the IS concept (March) • All-ion Accelerator was awarded a patent. (November)	RPIA2006, HB2006 EPAC2006, HIF06

E.M.McMillan & the first Synchrotron@LBL (1945)

E=340MeV
Week focusing

by courtesy of LBNL

CERN

Large Hadron Collider E=7 TeV Circumference= 27km

Beam comission in 2007 fall

Concept of Induction Synchrotron

K.Takayama and J.Kishiro, "Induction Synchrotron", Nucl. Inst. Meth. A451, 304(2000).

Difference between RF and Induction Synchrotron seen in Phase-space

Equivalent Circuit for 2.5kV Induction Accelerating System

DC P.S. Switching P.S.

 $V_0 \sim V_2 = V_3 \sim ZI_Z$ (calibrated)

I_Z (always monitored)

More information on key devices:

http://conference.kek.jp/rpia2006/

Set-up of the induction synchrotron using the KEK 12GeV PS

Scenario of the POP Experiment

The scenario has been divided into three steps.

1 st Step:

RF trapping + induction accel.

(Hybrid Synchrotron)

500 MeV -> 8 GeV for 6x10¹¹ppb

2004/10-2005/3

2nd Step:

Barrier trapping by induction step-voltages

at 500 MeV

through 2005

3rd Step:

Barrier trapping + induction accel.

(Induction Synchrotron)

500 MeV -> 6 GeV for 2-3x10¹¹ppb

2006/1-3

Monitored signals of induction voltage and an RF bunch

time[sec]

• Synchronization between two signals has been confirmed through an entire acceleration.

Step 1 Hybrid Synchrotron

Proof of the induction acceleration in the Hybrid Synchrotron: Position of the bunch centroid in the RF phase

K.Takayama et al., Phys. Rev. Lett. 94, 144801 (2005).

Step 1 Hybrid Synchrotron

K.Torikai et al., KEK Preprint 2005-80 (2005), submitted to *Phys. Rev. ST-AB*

Step 3 Induction Synchrotron

Movie show of the full demonstration

Temporal Evolution of the Bunch Length: Adiabatic dumping in the Induction Synchrotron

Theory: A WKB-like solution of the amplitude-dependent oscillation system (synchrotron oscillation in the barrier bucket)

T. Dixit et al., "Adiabatic Dumping of the Bunch-length in the Induction Synchrotron", submitted for publication (2006).

Motivation for All-ion Accelerators (AIA)

from the experimental demonstration of induction acceleration in the KEK-PS

- Stable performance of the switching power supply from ~0Hz to 1MHz
- Master trigger signal for the switching P.S. can be generated from a circulating beam signal

Allow to accelerate even quite slow particles

Betatron motion doesn't depend on ion mass and charge state, once the magnetic guide fields are fixed.

A single circular strong-focusing machine can accelerate from proton to uranium.

Concept of an all-ion accelerator

almost <u>injector-free</u> for a low intensity beam

K.Takayama, K.Torikai, Y.Shimosaki, and Y.Arakida, "All Ion Accelerators", (Patent PCT/JP2006/308502)

Schematic View of AIA

500 MeV KEK-Booster

Modification of the 500MeV Booster to the AIA

Principal property of the existing accelerators

Energy	Static	RFQ+DTL	Induction	Cyclotron	RF	All-ion accelerator
E/au	Accelerator		Linac		Synchrotron	(Ind. Synchrotron)
Low	No limit	Limited Z/A	No limit	limited Z/A	limited Z/A	No limit
< MeV				charge state		
Medium	NA	Limited Z/A	No limit	limited Z/A	limited Z/A	No limit
< GeV		(expensive)	(expensive)	charge state		
High	NA	Limited Z/A	No limit	NA	No limit	No limit
>> GeV		(expensive)	(expensive)		but limited	
					by Injector	

if an extremely good vacuum is available

Comparison of the AIA with other existing medium energy ion drivers

Low energy injection and space-charge limited current

Low energy injection -> low Space-charge limit -> restrict high intensity operation

V: extraction voltage from the ion sourcev: injection velocity into the all-ion accelerator

$$\frac{1}{2}A \cdot mv^2 = e \cdot Z \cdot V$$

$$v = \sqrt{\left(\frac{Z}{A}\right) \cdot \frac{2e}{m} \cdot V}$$

$$\beta \propto \sqrt{\left(\frac{Z}{A}\right) \cdot V}$$

Laslett tune-shift: ΔQ

$$0.25 \ge \Delta Q \propto \frac{Z^2 \cdot N}{A \cdot B_f \cdot \beta \cdot \gamma^2} \propto \frac{Z^2 \cdot N}{A} \sqrt{\frac{A}{Z \cdot V}} = N \cdot \sqrt{\frac{Z^3}{A \cdot V}}$$

Space-charge limit particle number:

$$\frac{N_{i}}{N_{p}} = \left(\frac{A}{Z^{2}}\right) \left(\frac{\beta_{i} \cdot \gamma_{i}^{2}}{\beta_{p} \cdot \gamma_{p}^{2}}\right) \frac{\left(B_{f}\right)_{AIA}}{\left(B_{f}\right)_{RF}} \cong \sqrt{\frac{A}{Z^{3}}} \cdot \sqrt{\frac{V_{i}}{V_{p}}} \cdot \frac{\left(B_{f}\right)_{AIA}}{\left(B_{f}\right)_{RF}}$$

Scaled from the data for Proton

our experience:

in the 500MeV Booster

 N_{limit} =3x10¹²/bunch, V_p = 40 MV

 $B_f = 0.3, f = 20 \text{Hz}$

Other assumptions in AIA:

same transverse emittance

$$V = 200 \text{ kV}$$

We will try at first.

$$B_f = 0.7, f = 10$$
Hz

	¹² C+6	⁴⁰ Ar ⁺¹⁸	¹⁹⁷ Au ⁺⁷⁹
A/Z	12/6	40/18	197/79
$N_{limit} (=N_i)$	1.3x10 ¹¹	4.7×10^{10}	1.1×10^{10}
N/sec	$1.3x10^{12}$	4.7x10 ¹¹	1.1×10^{11}
extract. E (MeV/au)		75	
depo.energy (J/cc)		2.3×10^3	

Example of Ar⁺¹⁸ Acceleration

B. Bulk Material Science

Bulk materials: metal, ceramic, semi-condutor magnetic material, polymer

a. Energy deposit due to electro-excitation

Creation of novel bulk materials

Modified Beam-lines

200KV Ion-Source

Expected Heavy Ion Beam Facility Organization (All Japan)

Tokyo Inst. of Tech. Utsunomiya Univ.

Nat. Inst. for Mat. Sci.
Inst. for Mat. Struct. Sci., KEK
JAEA
Ibaraki Univ.

Hyogo Prefectural Univ. Aichi Education Univ.

Period: 5 years/1st stage

Cost: ~ 7 M\$

now on reviewing by the financial agency

Road Map

A: Warm Dense Material Science, B: Modification of Bulk Materials

	VV drin Dense iv.	'07	,08	' 09	' 10	' 11	remarks
Accelerator &	Modification of the Booster to the AIA		—				
Beam test	Beam commissioning						
Beam Line	Beam lines		—				
& Target Area	Preparation of irrad. Bench for A						
	Preparation of irrad. Bench for B						
Experiment	Planning/Experim ent for A						
Experiment	Planning/Experim ent for B					•	s.
	Theory and Simulation works					-	
	R&D toward future					-	

Summary

- A reliable full module for the induction accelerating system consisting of 50kW DC P.S., Pulse Modulator, Transmission Cable, Matching Resistance, Induction Cell, which is capable of operating at 1 MHz, has been confirmed to run over 24 hours without any troubles.
- The digital gate control system with a function of beam feed-back has been developed.
- A 400 nsec-long proton bunch captured in the barrier bucket was accelerated up to 6 GeV with the induction acceleration voltage.

This is a full demonstration of the Induction Synchrotron Concept.

One of its possible and uniqueapplications in a medium energy region may be

an All-ion Accelerator (AIA): the injector-free induction synchrotron.

A modification plan of the KEK Booster Ring to the AIA was described. Hopefully, available heavy ion beams will be provided for WDM Science and bulk material science.